Portfolio Optimization on HPC platforms

Peter Gottschling, Cornelius Steinhardt and Theodore E. Omtzigt

SimuNova UG and Stillwater, Inc
Overview

Goal
1. Overview
 - Goal

2. Algorithms
 - Introduction
 - Quasi-Newton
 - Algorithmic Description
Overview
- Goal

Algorithms
- Introduction Quasi-Newton
- Algorithmic Description

Realizing with MTL4
- BFGS implemented with MTL4
- Generic Implementation
- Comparison with Algorithmic Description
1. Overview
 - Goal

2. Algorithms
 - Introduction Quasi-Newton
 - Algorithmic Description

3. Realizing with MTL4
 - BFGS implemented with MTL4
 - Generic Implementation
 - Comparison with Algorithmic Description

4. MTL4 gives you:
 - High Productivity
 - High Performance
 - High Portability
Goal: Optimizing stock portfolio for minimal variance
Use: Non-linear optimization
Realize: On different platforms with one single implementation
 - Readability through natural math notation
 - High-performance adaptive code generation
For a given set of stocks we search a portfolio such that:

- The overall yield on shares is a specified r and
- The variance of the portfolio is minimal.

The stocks are characterized by:

- A vector \vec{r} of expected rates of return and
- A matrix σ of covariances between any pair of stocks.

Mathematically spoken, we search a stock mixture π with:

\[
\langle \pi, \vec{1} \rangle = 1 \quad \text{(Sum is 1.)} \quad (1)
\]
\[
\langle \pi, \vec{r} \rangle = r \quad \text{(Aimed rate of return.)} \quad (2)
\]
\[
\pi^T \sigma \pi \rightarrow \min \quad (3)
\]

The constraints (1) and (2) can be handled by Lagrange functions:

\[
\alpha(\langle \pi, \vec{1} \rangle - 1)^2 + \beta(\langle \pi, \vec{r} \rangle - r)^2 + \pi^T \sigma \pi \rightarrow \min \quad (4)
\]

with some large α and β.
Solves non-constraint optimization problems
Like in equation (4)
Opposed to regular Newton the second derivative is approximated
 - Already for this approximation numerous methods exist
 - We use Broyden/Fletcher/Goldfarb/Shanno (BFGS)
Algorithm 1: Quasi-Newton

Input: \(x^0 \in \mathbb{R}, H_0 \in \mathbb{R}^{n \times n} \) symmetric positive-definite

\(k := 0 \)

while \(\nabla f(x^k) > \varepsilon \) do

\[d^k = -H_k \nabla f(x^k) \]

Find \(\alpha > 0 \) that holds Wolf’s condition

\[x^{k+1} = x^k + \alpha_k d^k \]

\[s^k = \alpha_k d^k \]

\[y^k = \nabla f(x^{k+1}) - \nabla f(x^k) \]

\[\gamma_k = \frac{1}{(y^k)^T s^k} \]

Update \(H_{k+1} \) // e.g. with BFGS

end

Algorithm 2: Broyen/Fletcher/Goldfarb/Shanno (BFGS)

Input: \(H^k, s^k, y^k \)

\[\gamma_k = \frac{1}{(y^k)^T s^k} \]

return \((I - \gamma_k s^k(y^k)^T)H^k(I - \gamma_k y^k(s^k)^T) + \gamma_k s^k(s^k)^T \)
Algorithm 3: BFGS with temporary for less redundancy

Input: H^k, s^k, y^k

\[
\gamma_k = \frac{1}{(y^k)^T s^k}
\]

\[
A = I - \gamma_k s^k (y^k)^T
\]

return $A \cdot H^k \cdot A^T + \gamma_k s^k (s^k)^T$

```cpp
struct bfgs {
    template <typename Matrix, typename Vector>
    void operator() (Matrix& H, const Vector& y, const Vector& s) {
        Collection<Vector>::value_type gamma = 1 / dot(y, s);
        Matrix A(math::one(H) - gamma * s * trans(y)),
        H2(A * H * trans(A) + gamma * s * trans(s));
        swap(H2, H); // faster than H := H2
    }
}
```
template <typename Matrix, typename Vector, typename F, typename Grad, typename Step, typename Update, typename Iter>
Vector quasi_newton(Vector& x, F f, Grad grad_f, Step step, Update update, Iter& iter) {
 typedef typename mtl::Collection<Vector>::value_type value_type;
 Vector d, y, x_k, s;
 Matrix H(size(x), size(x));

 H = 1;
 for (; !iter.finished(two_norm(grad_f(x))); ++iter) {
 d = H * -grad_f(x);
 value_type alpha = step(x, d, f, grad_f);
 x_k = x + alpha * d;
 s = alpha * d;
 y = grad_f(x_k) - grad_f(x);
 update(H, y, s);
 x = x_k;
 }
 return x;
}
Algorithm 4: Quasi-Newton

Input: $x^0 \in \mathbb{R}, H_0 \in \mathbb{R}^{n \times n}$ SPD

$k := 0$

while $\nabla f(x^k) > \varepsilon$ do

$\quad d^k = -H_k \nabla f(x^k)$

\quad Find $\alpha > 0$ that holds Wolf

$\quad x^{k+1} = x^k + \alpha_k d^k$

$\quad s^k = \alpha_k d^k$

$\quad y^k = \nabla f(x^{k+1}) - \nabla f(x^k)$

$\quad \gamma_k = \frac{1}{(y^k)^T s^k}$

\quad Update H_{k+1}

end

Vector quasi_newton(Vector& x, F f, Grad grad_f, Step step, Update update, Iter& iter)

{ Vector d, y, x_k, s;
Matrix H(size(x), size(x));

H= 1;

for (; !iter.finished(two_norm(grad_f(x))); ++iter) {
 d= H * -grad_f(x);
 value_type alpha= step(x, d, f, grad_f);
 x_k= x + alpha * d;
 s= alpha * d;
 y= grad_f(x_k) - grad_f(x);
 update(H, y, s);
 x= x_k;
}

return x;
Today everything can be done nicely on a computer except one thing: Computing!

- Programmers do not drown in technical details.
- Algorithms are written in purely mathematical notation.
- Programming becomes intuitive (like in Matlab and Mathematica).
- MTL4 provides already an extensive functionality out of the box.

Instead of wasting their time with hacking, scientist can do science, engineers can do engineering, . . .
MTL4 maximizes performance by compile-optimization
 - Like expression templates

Meta-Tuning: new technology developed by Peter Gottschling
 - Tuning at compile-time saves from re-implementation
 - See http://simunova.com/node/151#metatuning

User-transparent interfacing to BLAS, LAPACK, Umfpack, ...
 - Where generic C++ is out-performed by assembler libs.
Figure: Comparison of MTL4 with other libraries on AMD Opteron 2GHz: left dot product and right dense matrix product. When BLAS is enabled than MTL4 has identical performance as underlying library.
Figure: Speedup (left) and performance gain (right) of different iterative solvers with user-transparent parallelization.
All shown programs run on entirely different platforms.
Accordingly, our iterative solvers are implemented once for all platforms.
All MTL4 applications written on an abstract math level are portable on:
- Single CPU;
- Supercomputers and parallel cluster;
- Graphic processors (under development);
- GPU cluster by combining the previous two versions
When new platforms come out, we will port MTL4.
MTL4 users keep their application codes without changing.
Using MTL4 makes your software future-proof.

HPC programming will be fun with MTL4!